
山东江澜环保科技有限公司
经营模式:生产加工
地址:济南市长清崮山工业园
主营:三相分离器,可提升式曝气器,厌氧罐,UASB厌氧等
业务热线:0531-81251230
金昌pp斜板混合沉淀池-江澜环保质量可靠
pp三相分离器,Egsb三相分离器,uasb厌氧罐厂家
UASB与IC运行的论坛,三相分离器在其中的作用:
UASB与IC在运行中的差别表现在抗冲击负荷方面,IC可以通过内循环自动稀释进水,有效保证了一反应室的进水浓度的稳定性。其次是它仅需要较短的停留时间,可对生化性好的废水的确是优点。大家同意因为IC运行稳定,抗冲击负荷效果好,容积负荷高,投资省等许多优于UASB的优点,而放弃再选UASB的观点么?
一般设计单位喜欢用有效容积来表示容积负荷,但济南新星更倾向于总容积来计算,否则,对业主来说很不公平,譬如说,有的设计单位对三项分离器的设计高度选择差别很大,同样出水堰离池顶的距离也不同,尤其是IC内部集气箱、布水器、回流系统设计各不一样,很难说有效容积为多少。我想选择有效容积是从宣传角度考虑的吧!比如啤酒废水按总容积来算,容积负荷6公斤完全可以,处理啤酒废水一定要注意水质的变化,同时还要考虑季节变化,针对水质调节池一定要发挥作用,水量的季节变化要考虑好氧池的余量即保险系数。
UASB相对于IC又有什么优点?
IC缺点尤其在污水可生化性不是太好的情况下,由于水力停留时间比较交短去除率远没有UASB高,增加了好氧的负担。另外,IC由于气提内循环,特别是对进水水质不太稳定的厂, 导致IC出水水量极不稳定,出水水质也相对不稳定,有时可能还会出现短暂不出水现象,对后序处理工艺是有影响的。UASB比IC突出优点就是去除率高,出水水质相对稳定。但IC优点很是很多的,特别是对于高SS进水,比UASB有明显优势,由于IC上升流速很大,悬浮物不会在反应器内大量积累,污泥可以保持较高活性,对于有毒废水也是如此!
讨论IC一反应室与二反应室负荷差距太大也是很大的浪费这一观点,污泥大部分都截留在一反应室导致二反应室投资效率低下,若部分提升回流到第二反应室我们也试验了结果并不好,不知专业环保师有无好的建议?
容积负荷应该以有效容积来计算的,一反应室与二反应室负荷应该有较大的差距,如过大当然是浪费,虽然上下反应室的容积比是固定的,但在实际运行中二个反应室的负荷差在一定范围内是动态的,所以这种负荷差与废水水质和反应条件有关。IC处理负荷确实很高,但运行费用也会高,此外由于上升流速很快,会使出水小颗粒比UASB多,加重了后续处理的负担,也可能在系统内产生堵塞现象。尽管如此,在厌氧反应器中我看到的还是IC,你说的若部分提升回流到第二反应室的做法不妥,这样易加剧出水悬浮固体增多,如果这样IC的运行工况就接近EGSB了,只是多了一个三相分离器而已。






三相分离器使用说明:
三相分离器是高效厌氧反应器重要的装置,主要安装在食品、化工、养殖业等高浓度有机废水治理的UASB反应器或者第三代高效厌氧反应器中,是有机废水厌氧生物处理反应器中的关键设备。它可以有效地实现气体、液体、固体三相分离。
二、功能
1、能收集从分离器下的反应室产生的沼气,并使气体与液体分离近于彻底,减小上升沼气对出水沉淀效果的影响;
2、充分分离反应器出水中的颗粒污泥,并使颗粒污泥返回至反应器内,以保持反应器内足够的污泥浓度。
我公司在三相分离器的技术上处于行业上游 位置,可以设计各种高浓度有机废水治理的UASB结构图纸及三相分离器施工图纸,并可为客户设计、生产安装一条龙服务,采用特殊新材质,具有耐腐蚀,高强度,使用寿命长等特点。
三、结构原理
三相分离器主要有底座集气罩及集水槽等部件组成。在反应池中,废水从污水泥床底部进入,与污泥床中的污泥进行混合接触,微生物分解废水中有机物产生沼气,微小沼气泡冒在上升过程中,不断合并逐渐形成较大气泡。由于气泡上升产生比较强烈的搅动,在污泥床上部想成悬浮污泥层,气、水泥的混合液上升至三相分离器内,沼气气泡碰到分离器下部的反射板时,折向气室而被有效的分离排除,污泥和水则经孔道和缝隙进入三相分离器的沉淀区,在重力的作用下,水和泥分离上清夜从沉淀区上部排出,沉淀区下部的污泥沿着斜壁返回区。
四、产品特点
1、设备标准化模块设计,适合安装;
2、设备集气效率、截固率高、气密性好;
3、缝隙宽度和遮盖宽度布置合理,无污泥流失;
4、采用快开式浮渣清理装置,保证出气管畅通无阻,不会堵塞;
5、启动速度快,不会出现断流、 截流等现象;
6、能耗低,沼气可收集利用;
7、该设备采用与传统三相分离器材质不一样的新材料,节省成本,质优价平。
IC厌氧反应器是继UASB、EGSB之后的一种新型厌氧反应器。它通过上下两层集气罩把反应器分为上下两个室,两个室通过内循环装置组合在一起。
进入IC厌氧反应器的有机物大部分在下反应室被消化,所产生的沼气被下层集气罩阻隔收集进入提升管,由于提升管内外液体存在密度差,促使发酵液不断被提升至气液分离器,分离沼气后又回流到下反应室,形成了发酵液的连续循环。
鉴于内循环发生在下反应室,故下反应室有较高的水力负荷,高水力负荷和高产气负荷使污泥与有机物充分混合,使污泥处于充分的膨胀状态,传质速率高,大大提高了厌氧消化速率和有机负荷。
